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TECHNICAL NOTE NO. 1103

THE LAGRANGIAN MULTIPLIER METHQD OF FINDING
UFPER AND LOWER LIMITS TO CRITICAL STRESSES
OF CLAMPED PLATES
By Bernard Budiansky and Pal C. Hu

SULIMARY

The theory of Lagranglan multipllers 1s applied
to the probhlem of finding both upper and lower limits to
the true compressive buckling stress of a clamped rectan-
gular plate. The upper and lower limits thus bracket
the true stress, whlch cannot be exactly found by the
differential-equation approach. The procedure for cbtaining
the upper 1imit, which is belleved to be new, presents
certain advantages over the classical Rayleigh-Ritz
method of finding upper limits. The thsory of the lower~
limit procedure has been glven by E. Trefftz but, in the
present application, the method differs from that of
Trefftz In a way that makes it inherently more quickly
convergent. It 1s expected that in other buckling
problems snd in some vibration problems the Laizangian
multiplier method of finding upper and lowsr limlts may
be advantageously applled to the ‘calculation of buckling
stresses and natural frequencles,

INTRODUCTIONW

Many important problems that cannot be exactly
solved by the differentisl~equation approach and must
therefore be gnalyzed by approximate methods arise in
the buclkling and vibrations of thin plates. The theory
of Lagranglan multipliers can be a powerful tool in the
analysis of many of these problems, The present paper
presents the detalls of application as well as the
fundamental principles of the Lagrangian multiplier
method by demcnstrating the use of the method to obtain
both upper and lower limlts to the true compressive buck=-
ling stress of a rectangular plate clamped along all edges,



2 NACA TN No. 1103

The procedure for obtaining the lower limit is
similar to a method used by Trefftz (refersnce 1) and
recently described by E. Reissner (reference 2). The
present lower-limit method differs from that of Trefftz,
however, in a way that makes it inherently more quickly
convergent. The upper-limit procedure, which does not
aprear to have been presented previously, 1ls simpler than
the usual Raylelgh-~Ritz method gnd may be expected to
permit the computatlon of more accurate results with less
lsbor.

In a recent treatment of the problem of —compressive
buckling of clamped plates, extensive calculations of
lower 1imits were made by Levy (reference 3) by means of
a procedure equlvalent to the Trefftz method., The results
were estlmated by Levy to be within 0.1 pesrcent of ths true
results, In order to illustrate the methods of the
present paper, uppsr and lower limits to the buckling
stress of a square plate are computed to wilthln 0,1 per-
cent of each other; a posltive chack on the accuracy of
Levy's results is thus obtalned,

\

SYMBOLS o=
a length of plate, in direction of stress
b width of plate, verpendicular to stress
B8 aspect ratio (a/b)
t thickness
o Poisson's ratig
B Young's modulus of elastidity
D ' plate stiffness in bending Et7

12(1 - u2)
b plate coordinate in direction of stress
Y plate coordinate, perpendlcular to dirsc-
tion of stress

w plate buckling deformatlion, normal to

plane of the plate
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O, . . eriticgl compressive stress, in =x direc-
tion
It - - - -—-critical compressive stress coefficient in
2
the formula, O, =k EEQ
ot
' internal energy of defcrmation
T external work of applied stress
v
Fourier cosefficient of . cos 2oy _
&n
a
br Pourier coefficient of cos rny
a
n
amn Fourier coefficient of cos EEZ cos —%Z
i, j,mn, p,q even intsgers e
r, s odd integers i .
Smn Kronecker delta (1 if m=n; 0 if m #n)

1
(w2 + 22622 - 1262] (1 + 60 + B0m)

a,K,Kj,ui,Y Lagrangian multipliers

THEORETICAL BACKGROUND

Rayleigh-Ritz method.~ The Rayleigh-Ritz energy
method for determining the critical stress of a thin
plate consists of the following steps:

(1) The deflection surface of the buckled plate is
expressed in expanded form as the sum of an infinite
set of functions having undetermined coefficients, In
general, each term of the expansion must satisfy the
geometrical boundary conditions of the problem. '

(2) The energy of the lcad-plate system 1s computed
for this deflectlon surface and is then minimized with
respect to the undetermined coefficilents, -
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(3) This minimizing procedure leads to a set of
linear homogeneous equacsions in the undetermined cosf-
ficients. These eguations have nonvanlshing solutions
only if the determinant of their coefficlents vanishes.
The vanishing of this stabllity determinant provides
the equation that may be solved for the bucklling stress.

When the set of functions used is a complete set
capable of representing the deflection, slope, and
curvature of any possible plate deformation, the solu-
tion obtained is, in principle, exact., Since, however,
the exact stabllity determinant 1s usually infinlte, a
finlte determinant yielding approximate results 1is
used instead.

Lagranglsn multiplier method.~ The Lagrangian
multiplier method follows the general procedure outlined
for the Raylelgh~Ritz method, wlth but one outstanding
change, The restriction in step (1) that the boundary
conditions be satlsfled by every term of the expansion
1s discarded and is replsced by the condition that the
expansion as a whole satisfy the boundary conditions,
This condition is mathematically satisfied in step (2),
during the minimization process, by the use of Lagranglan
multipliers,

The fundamental advantage of the Lagranglan multiplier
method lies 1In the fact that, with the rejection of the
necesslty of the fulfillment of boundary conditions term
by term, the choilce of an expansion 1s much less restricted.
In the clamped-plate compression problem, a simple Fourier
expansion may be used instead of the complicated func-
tions assumed in the Rayleigh-Ritz analyses of this
problem (references L and 5)., Furthermore, the orthogo-
nallty properties of the simple Fourier expansion lead
to energy expressions of a simplicity that is instrumental
in permitting accurate computations,

Approximate solutlons of upper and lower limits.-
The Lagrangien multiplier method, as well as the Rayleigh-~
Ritz method, glves a theoretically exact solutlon for
the buckling stress; but ordinarily only approximate
results are obtained because of the practical necessity
of consldering finite rather than infinite determinants.
In the Rayleigh-Rlitz method the approximate result 1s
always higher than the true buckling stress., In the
Lagranglen multiplier method, however, 1t is possible to
obtain approximate solutions in two different ways,
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which permit the computation of a lower 1imit as well as
an upper limit to the true buckling stress. As deter-
minants of higher order are used to obtaln approximations
of hizher order, both the upper-limlt and lower-limit
regults epproach the true buckling stress. Thus, the
Lagrangian multiplier method can be used to nrovide a
result to within any specified degree of accuracy. It
may be expected, furthermore, that a particular deter-
minant in the Lagrangian multiplier method ought to
yield a more accurate result than a determinant of ‘equal
order in the Rayleigh-Ritz method.

LAGRANGIAN MULTIPLIERS

Thie procedurs used In applying the fundamental
mathematical principles of Lagranglan multipliers is
described in this section; a general proof of the
valldity of ths method 1s given in the appendix.

Let it be required to minimlze a function of N
varliables L

f(xl, X2, Xz o o o XN) (1)

where the x's are not Independent but are bound
together by the relationship

CP(Xl, X2, X5 « s o KN) =0 (2)

Lagrange's method of simultaneously minimizing
and satisfying the constraining relationshilp (2) is to
minimize the function

£ - Ao

with respect to the x's. The gquantity A is the .
undetermined Lagrangian multiplier, The necessary con-
ditions for minimizing f then become

K
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of 399 = (K=1, 2, 3 . . N)
Oxp  Oxg
©=0 (equation (2))

Note that these expresslons are N + 1 equatlons in
the N + 1 unknowns. X;, Xy, « » « Xy and A

I there are.two relationships that constrain
the x's; that 1s, 1f

¢1(xl’ Ko o v o XN) =0
Cpg(xl, Xp s b 'XN) =0

two Lagrenglan multipliers are then needed. The func-
tion toc be minimized becomes

£ =A% - A0,

and the minimizing equatlons are

59 ] L
a,f —}\ __..._].'.- 2.——?—2--"-'0 (I{'..:l’ 2_, 5 c.- 'N)
®, =0
¢, =0

[t

The method 1s easlly extended to cover the case of
any number of constraining relationships,

PRELIMINARY ILLUSTRATIVE EXAMPIE

Before the main example 1s given, a simpler buckling
problem wlll be snalyzed by the Lagranglen multiplier

1
Hy L

1o
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method in order that the method of application of
Lagranglan multipliers may be most clearly predented
without the obscuring details of analyslis of more complil-
cated problems, This elementary problem reguires the

use of but a single Lagrangian multiplier which leads

to a single stability equation.

b

ILGL L L L L LSS g L] - - - =

| a =

x

e
o

b(=a)

o

<

2T TIITIT T T 7 77T 777777 X

Consider a square plate, clamped glong two opposite
edges, simply supported along the other two edges, which
is loaded in compression on the simply supported edges.
(See sketch,) From the exact solution of this problem,
the deflection surface of the plate is known to be sinus-
oldal in the =x directlon. The deflsction in the
y direction, known to be symmetrical, must satisfy the
clamped-edge boundary conditions; that is, zero deflection,

w(x, 0) = w(x, a) = 0 ~ (%)
and zero slope s . -
%% x, 0) = g; (x, a) = 0 (L)

The nresent method uses a cosine-series ‘expansion,
whereas the Trefftz pnrocedure would use a sine-seriss

expansion, The problem is solved by both methods for
comparison.
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Cosins-series sclution.- In the cosine-~series
solution the expansion

<o
—

an cos EEE (5)

=
i
ta
[N
o
i

‘.O

;j\v/

-

may represent the deflection surface having m half-.,
waves 1n the x direction, since the Fourler series of
esven cosines 1s a complete symmetrical set.

The boundary conditions (equation (lt)) on the slope
are satlafied by each term of the sxpansion; however, in
order that w satisfy the conditlons of squation (53 on
the edge deflection, 1t ls necessary that

(oo

a =0 | (6)
n=0,2,;; ves O

Equation (6) 1s a constraining relationship on the a's
and as such will be introduced in Lagrange's minimizatlon
process,

As in the Rayleigh-Ritz method, the internal energy
of deformation and the external work of the stresses ars
then calculated. TUsing the value for w as given by
equation. (5) in the general formiulas (reference 6,
equations (199) and (201)(modified))

2
vV = P— afb <;_O_2_V_V_ o+ .afj.v.>
2 5 Jo 5x2 byz'

oxt {a'ﬁb (6WY2 av dx . (8)
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expression

be a minimum with respect to the
a's
Hence, mathematically stated,

example,

bound by equation (6).

however, the

V ~

(1 + 5dn) an2

T

als,

2 4+ n2)2<1 + 50n) an

n=0,2,? ase

The usual Rayleigh-Ritz

2

procedure requires that the

(9)

In the present

are not independent but are

the expression V - T must be a minimum subject

constraint relationship on the

(=]

_. ®n
n=0,2,L ...

0]

.als

(Equation (6))

to ﬁhg

Solving this minimization problem by Lagrange's
method makes 1t necessary to minimize

with respect to the

(v -T) - M

als,

a minimum then become

-
n=0,2,ﬁ oss

[o2]

N

n

(10)

The necessary conditions for



10 - FACA TW To. 1103

[ <=
d /) an
6(V—T) k=0 )
- n=0,2,0 = 0 (3=0,2, L ...)
baj baj
—.
;>> an = 0
n=0,2,lL ...

or, upon differentiation and simplification, ~

1.4+ 8. ,-mz +'j2)2 - m®klay - e A= O”. .(ll)
( 01) _ ST p T

(3=0,2, k..o

n:

// a, =0 (8)
0,2,k ... | "

Solving equation (11) for aj and substituting into

equation (6) gives the stability equation that deter-
mines ke : )

o]

N 1 )
e A o (12)

For a particular number of half waves m, thils
equation may be solved by evaluating the seriles for
several trial values of k and interpolating to find
the Lk that makes the serles vanish, The correct value
of m 1s that which glves the lowest value of k. For
two half waves (m = 2) in the loadsd direction, the
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theoretically exact value of k = 7.:69 (wreference 6,
page 3li5) 1s obtained when only ten terms of equation (12)
are computed. —

Sine-series solution (Trefftz method).- The same
problem will be treated in the nanner suggested by
E. feissner (reference 2), which is similar to Treffitz's
method (reference 17.

Tet

The boundary conditions on deflection (equation (3))
are now satisfied term by term, but the conditions on the
edge slopes (equation(h.)) are satisfied only by making

P rb, = Q0 . Coo (1)
=1,%,5 ¢ . . o -

Now, the expression V - T 1s computed fram
formulas (7) and (3) by using the value of w given
by equation (1%); then, by application of Lagrange!s
procesdure, o )

-

(V-m) - ¥ > ro, '___t15)
r=1,%3,5 .6

must be minimized with respect to by (8 =1, 3, 5, « + )
The Lagrangian multiplier is «.
The minimization equations are . Lt

- 2
2, .2y2 _ . 2 Jhas oo
ém + s<) nlglbs 55 vS
o0
=
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3o0lving equation (16) for b and substituting in
equation (1) gives as the stabilfty equation

2 2
N = =0 (17)

£ (ma + 82)2 - m21c

Comparisor and discussion of results.- The series.
in equation (17) converges approximately as 1/@2
whereas the seﬁies in equaticn (12) converges approxi-~
metely as Because of the more rapid convergence
obtained in the stabllity equation, the Lagrangian
multliplier method is preferably used to satisfy the zero-
deflection condition rather than the zero- slope conditlon.
Slope 1s the derivatlve of deflection, and in general,
differentiation of a series makes 1t more slowly con-
vergent,

THE COMPRESSIVE BUCKLING OF A RECTANGUIAR FIATE
CLAMPED ALONG ALL EDGES

The previous elementary example required only a
simple Fourier expansion and but one Lagrangian multipller
to satisfy the boundary conditions., The more difficult
problem of finding the bucklling stress of the rectangular
plate clamped on all edges and loadsd as shown in the
accompanying sketch necessitates a double Fourler series,
as well as an infinite set of Lagranglan multipliers to
satisfy the boundary conditions.

b
il Lit 2L LSSl e
/] A j
__ﬁél_ . te=
A L/
/1 %
—~%7 e
V
A b /
——eé éé——dx
] ?
—a5 e —
/] ./
A L/
A L
—— S Sqmaman
/ L’
A /s
N x

T AT 7777
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Boundary conditions.- The boundary conditions of
the problem are:

Zero cdeflection, loaded edges

w(0,v) = w(a,y) =0 _ (18)

Zero deflection, unloaded edges
w(x,0) = wi(x,b) = 0 (19)

Dero slope, loaded edgses

ow ‘
ow - oW =0 20
bX(O V) ax(a,y) (20)

Zero 8lope, unloaded edges ) L ——

W r0) = Mx,p) = 0 (21)
57 oy _

Fourier expansions.- In ordsr to achleve a rapidly
convergent solution, the principles established by the
preceding example are used as the basls for choosing the

Fourier expansions to satisfy, term by term, the condi-
tions of zero slope .rather than those of zero deflection.

The buckling deformation corrssponding to the lowest
buckling stress is always symmetrical perpendicular to
the direction of load but, depending on_the aspect ratio
of the plate, may be symmetrical or antisymmetrical in
the direction of load. Thus, for symmetrical buckling,
let ’ _ _

[22] c>

w = :> ; 8.y COS DX cos ZEL (22
_ e a b
M=0,2,01 oee 070,201 oo

and, for antisymmetrical buckling, let

w = 2 8py COS IMX oos Egz (23%)
r=1,%,5

LI BN n—o 2" LI I
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It is sufficient, for purposes of demonstration,
to consider only the case of symmetrical buckling.
Hereinafter, w therefore refers to the value given
by equation (22).

Energy expressions.~ Using the axpansion glven by
equation (22) in the evaluation of the general energy
and work integrals of equations (7) and (8) gives

o2}

i "g:; ; (52 + 22651 + 60 + Bon) a2
m=0, 2 ese n=0,2,

wzctb
m2(1 + & 2
m—OdﬁiI'... n=0 :§;; ( On) -

Then
V-rT= "LBLD;’ < /: e 8 ” (2h)
a __- £ mn
mO, ,LI- s nN=0 2,)-‘- 6 .
where
1 | 2 .
Note that V - T . 1s independent of 8504 since
_!‘_ = 0,
AOO _ - me

Constraining relationshipse.- The boundary conditions
of zero slope (equations (20) and (21)) are satlsfled
by each term of the expansion of equation (22), but the
condltions on deflection (equations (13) and (19)) must
be satisfled by the expansion as a whole. Substituting w
into equation (18) gives, along the loaded edgeés,
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s,

w(0,y) = w(a,y)

oo o

D -

m=0,2,E vew m=0,2,0 oo

(o]
+ cos o E amh
m=0,2, e

émy .
+ cos 5 ay6 + s .

m=0,2, vew

Since this PFourier series must vanish, each infinite
series that constitutes a coefficient of a cosine term
must vanish. (All,the Fourier coefficients of the _
Fourier expansion of the function zero are zero.) Hence

y 8y = O (3 =0, 2, L . ..} (25)

By expressing the fact that there 1s zero deflection
along the unloaded edges (equation (19)), it can be
similarly shown that o

:> n = O (1=0,2,4..0 (26)
n=0,2,4 «..
Mow, V - T must be a minimum with respect to
g the a's, which are bound by equations (25) and (26).
As the problem now stands, howsver, 1t 1s not in the
. form to which Lagrange's minimization process can be

applied since V - T does not contain agg, whereas = T
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the constralnt relationships do contain agc. Hence,
agg 1s eliminated from the constraint relationships by

subtracting the first of-equations (26), the equation

for 1 = 0, from the first of equations (25%), the equa-
tion for § = 0, The final set of necessary constraining
relatlonships on the minimization of the energy expres-
sion (24) .

2
v - p = IR 1,
8a2 . . Amn
m=0,2, 08 n:O,z, N

then becomes
o \

—~0 . <«
j> &mo - ; 20n ~
n=2 «os

m=2,&,3 ev e = sty

|
(@]

amj = 0 (j = 2)h$6 f - J> @7)
m=0,2,0 ...
\ ain =0 ( 1= 2, )-l-: 6 . . .)

”
7
n=0,2,11 ...

Theory of uppner and lower limlt solutions.~ A
theoretically exact solution to tire problem would be
obtained if the snergy expression (equation (2l)) were
minimized with respect to all the a's and at the same
time all the relationships (27) were satisfied. This
result follews from the facts that: (a) the expansion
of equation (22) is a complete symmetrical set, capablse
of representing the exact symmetrical buckling deforma-
tion, and (b) the fulfillment of the conditions of
equations (27) ensures that the boundary conditions are
completely satisfied., An exact sclution 1s not possible,
however, because it would invelve an infinlte determinant,
so that two different modificatlions of the ideal pro-
cedure are used to obtaln approximate results. One of
these methods glves an upper limit to the true buckling
atress, whereas the other gives a lower 1limit.
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An upper limit to the buckling stress can be found S
by arbitrarily setting some a's equal to zero,
minimizing expression (2L.) with respect to the remaining
ats, and satisfying all the constraint relationships (27).
An upper limit 1s obtalned inasmuch as arbitarily setting
some of the Fourler coefficisnts equal to zero has the
effect of restraining the deflection of the plate, which
in effect stiffens the interior of the plate and increases
the stress required to buckle it. . T

A Jower 1limit to the buckling stress can be found by
minimizing expression (2}) with respect to all the a's
but satisfylng only some of the constrainlng relation- N
ships (27). Neglecting some of the constraining rela- -
tionships has the effect of giving the plate greater _
freedom at the edges and hence reducing the stress = T
required to buckle the plate. ' a

Lower 1imit solution.- In accordance with the require-
ments for a lower 1limitG, the constraining relatlion-
ships (27) will be satisfied only up to Jj = q and
i1 = p. By Lagrange's minimlzation process, the function
to be minimized is then

Db 1 =

G = L 2 R
3 4:§;; ma =

88. m:0,2’ s a8 0 n::O,Z, L L2 I ) Amn o s _;__._. —

e o fo's) .
m=2,.[., e e n=2,£,6 K o

d o ' ) — -

- E Kj E & 3 _
j=2,14,6 ... m=0,2,4 ... S ————
p _____ _ B -
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q’
multipliers. The équations for minimizing V-T with
the constraining relationshqu3(27} on the a's then
become. . . e, . o

The a, M + « o A Bp o o s W aTe Lagrangian

O8mn > (28)

Equations (27)

Evaluation of &G/%a . gives

won 1
he? A

fymn ~ CL(ESOn - mO) - Ay - “@ =0 | (29)

where Kn appears only if 2 S_n_éug and by appears
only if 2 € m <€ p. From equation (29)

1 - -
T e =0 (e =2 k6.
P sq+e - - =

Hence for any particular d, e, eilther

1

Ap+d’q+e . . o ’

or
ap+d,q+e = O

The first alternative, however, ordinarily would
reguire k to be very high, corresponding to the
buckling stress of a buckling mode with many waves in
both directions, For the lowest buckling load, then,

Q.ig,qte =0 (&, e=2, L, 6...)

e
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It is therefore necessary to be concerned with only the

other als,
',
- Lp 35
" oo

which,
Amn(}“n * "'m)

Amo(“ + “m)

from equation (29), are

\ -

om0 = g > (m, n # 0) (30)
3
- 8. 1
a0n ~ nqu AOn(_(I +'”n)
-In equations {30), Kn does not appear if . n >q and W

€

does not apnear iIf m > p.-

Substitutingz the values of atg given by equation (30)
back into the constraining relationships (27) up to

j=aq, 1=p gives .
~a . %
N, =
Amo 2 mO“ /)' A'On n °
=2,11,6 2,6 m=2,L,6 n=§:E—:6--- _
_P =
AN -
2T 6. w0, 25k, L (31)
(j = 2) Ll-, 6 PR Y q_)
— 3
A A \‘ A =
10% ¥ By in * irftn = O
n=90,2,h... n=2,1;,6...

(i=2: )-l-! 6.' --P)

f

%(p+q)+l linear
R
q

These equations form a set of

homogeneous equations in a, s « « & by s ha -
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Since when buckling occurs the a's are not all zero,
by equation (30), the Lagranglan multipllers are not all
zero, In order that equations (31) be compatible, the
determinant of the coefficlents of the Lagrangian
multipliers must vanish. Ths vanishing of this stabililty
dsterminent provides the detsrminantal equation that may
be solved for Lk by substitution of trial values and
interpolation, - )
That certaln elements of the determinant consist
of an Infinite series of ATn terms 1s evident; these
series converge rapidly. Since such rapldly convergent
series are calculable to any degree of accuracy, they
may be conslidered as known quantlties., Each wvalue
of Amn represents the potential-energy contribution

of & term in the expansion for w; hence, the effects
of infinlte subsets of expansion terms enter into this
solution. Thus, for p = q = 2, the expansion terms
corresponding to the a!s shown in figure 1 enter into
the solution; similarly, the terms represented in
figure 2 enter into the solution when p = q = L.

Upper-limit solution.- The lower-limit solution
satisTled only some of the constraining relationships (27)
but assumed the existence of all the Fourler coefflclents.
If an upper limit 1s to be obtalined, it will be necessary
to satisfy all the constraining relationships while
arbitrarily assuming some a's to be zero.

As a direct result of the necessity of satlisfyling
all the constraining relationships in the upper-limit
solution, 1t -1s found that the first of eqhations (27) is
redundant and may be discarded, since it is automatically
satisfled when all the remaining equations (27) are
satisfied. As a proof of this redundancy, the condltions

o0
e——

> ayy =0 (3=, b6 )
m=0,2,. , . o R

are summed over J and subtracted from the sum of the
conditions : - -

\\ a =0 (1¥2, L;;é. .-.)

&
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over 1 end give -

. > - — . o2 -2 —_—
< ~ \ -
P a3, - (>\ ]  apy 0
1=2,L,6... n=0,2,... = 3=2,I,6... m=0,2,k...

Simplifyling this equation

— o
1=2,0,6... ji=2,h,6... : - T

which 1is precisely the first of eguations (27).

Tt is to pe emphasized that the redundancy of a
constraining relationship is a peculiarity of only the . e
upper-limit solution, since, as shown by the proof given,
the redundancy depends on the fact that all the con- -
stralning relationships must be satisfied.

Vith the elimination of the redundant condition,
the necessary constraint relationships become

[o0) - N
amj = 0 (=2, 04,6 ... (32)
m=0,2,1... S T ' 3

asgp = 0 (1=2, 4, 6 . . ) (33)

At thils point, In accordance with upper-limit theory,
1t is necessary arbitrarily to set certain a's equal to
zero, It 1s possible to take advantage of the Lagrangian
multipller method by allowing infinite rather than finite
sets of a's to exlst and still to obtain a stability
determinant of finite order. Thus, infiuite strips of
coefficients of the type shown in filijures 1 and 2 can
enter into the solution. In the lower-limit case, the
existence of all coefficients was assumed, but the coef-

ficlents ap+d,q+e were proved. to be zero; in this —
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upper-limlt solutton, it will be arbitrarily assumed
that these same a's are zeroj; thus

ap+d’q+e = O (d, e = 2, l!..'_, 6 Y . .).

The constrainlng relatlonships (32) and (33) become

E &y = 0 (3 =2, L 6 ¢, ¢ a) (32a)
,E—ooo . . -‘ ’ ’ -
ji;— 8py = 0 (i=a+2, g+, « « ) (32b)

}'—’Ll-"‘ o

;: a4y = O (1=2,L4, 6+ . ¢p) (3%a)

->- 8y, = 0 (L =p+2, 2+, .. .'.'°°) (533b)
n=0,2,l!_.'0 B

The function bto be minlmized 1s

oo DD >
8&5

3"1'—:0’2,14.- s e N&=

u—q+2,q+h--- n=

0,2, g.c‘l

o a

- 1 &1in
i=p+2,p+l... n=0,2,kL...
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The first double summation of this equation extends over . B
onlv the values of m and n such that —

A

m=p if n>q
n<qg if m>p

oG

Seyn
trarily allowed to exist,

fmn = %Enm()‘n * “m)]

Setting

= 0 then gives, for all the a's arbi- o

where Ko and p, do not exist. Substltuting back into -

the constraint equations (32a), (32b), (33a), and (33b) gﬁmé

(== [e-] C —— —

N3 E Ay + Bpgtm =0 (3 =2, b, 6. ¢ v a)(Fa)

m=0,2,'... m=2, ,6... T L LT

"

+ Amju,m = 0 (j = q_+2, q+L|.. 'o°°)(5}-|-b)

m=0,2, ev e m= » ,6.-.

0 (1=2,k, 6 ...0)3a)

(i = p + 2, p + )-(. ...m)(‘ng)
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These equatlions involve all the Lagrangiasn multi-
pliers, They ¢an be reduced.toc a set of equations,
however, in kz s e e kq, Ho o o “p in thes following
manner: : .

From equation (35b), for 1 =p+2, p+L4 . ..
aq

U —

- ;>’ Ainkn
n=2,01,6..

. RO,
\\

by =
) Ain
N=Uyglle v

From equation (34b), for j =g+ 2, @+ L4 ... .

- APy

o Pmy

m=0 . . . . ' B} . .

Substltuting thess expressions for thy and A into
equations (3la) and (35a), respectively, glves as the

final stability equations: / q N
" p | . - _ Am. 1'2"“
T < < n Bl 6e .. |
5 Ay * J Ansbiy = Mgl T = 0
m=0,2, jese mM=2,0, Oeee m=p+2, ptli, o o _>_ Amn/ ~
=O, gile en
. (=2 b 6. . )
R \
6
q - > —— - op 8
NERE S = T el
P, AyrMn - / Ai )l R * Hi/' in
n=3,11, 6.0 n=q+2,q+l... > Amn n=0,2, .
m=0, 2, s s
(i = 2, ).l., 6 . e p)
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Equations (36) form a set of '%(p + gq) 1linear
homogeneous equations in ™2 . . . Aq, H2 . . . Pp.

The stabllity determinant is the determinant of the
coslficients of the At's and u's. -

It is of interest to note that in the usual
Rayleigh-Ritz solutions only finite sets of expansion
terms are ever taken into account, and the order of the
determinant obtained 1is ordinarily equal to the number of
terms considered, It is then reasonable that a particular
determinant obtained by the Lagrangian multiplier method,
which considers infinitely more expansion terms than a
Rayleiph—Ritz determinant of equal order, may be expected
to give a more accurate result.

Numerical example.~- For the case of a squsre plate,
g = 1, upper and lower limits were computed. Thse
results for the buckling-stress coefficient k were:

Approximation Lower limit Upper limit
FPirst: p=q = 2 9.99 ' 10.11
Second; p=q =L 10.07 10.08

The expectaticn that the Lagrangian multiplier
method should give closer upper limits than the Rayleigh-
Ritz method, for a given-order determinant, can be con-
firmed for this example. A second-order Lacranglan

multiplier determinent gives an upper limift of
k = 10.11, whereas Maulbetsch (reference lL) and Smith
(reference 5) use complicated deflection functions in

the Rayleigh-Ritz method to derive third-order deter-

minants that give, respectively, k = 10.48 and

k = 10.11. -

It is seen that the second approximation, requiring
the evaluation of a fourth-order determinant for the
upper 1limit and a fifth-order determinant for the lower
limit, definltely establishes the value of k to within
0.1 Dercent.

Levy (reference %) used an ingenious method of
obtaining lower limits that 1s, in fact, equivalent to
the Trefftz method of using double sine serles and
satisfying the zero edge~slope condition by the
Lagrangian multiplier method. On the basis of com-
putations involving determinants up to order twenty,
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Levy concluded that his results obtainsd from tenth-
order determinants are within 0.1 percent of the true
results, Inasmuch as Levy obtained k = 10,074 for the
square wnlate, the present relatively simple upper- and
lower-limit calculations show that his estimated limit
of error 1s correct for this case,

CONCLUSIOCNS

1, The Lagrangisn multiplier method can be used to
compute accurate upper and lower limits to the compressive
buckling stress of a clamped rectangular plate, thereby
bracketing the true result.

2. From a conailderatiaon of ranidity of convergence
toward the exact salution in eclampzd~plate problems, it
ls prefereble to uss an expansion that satisfiles the
zero~-sliope boundary conditlong term by term rather than
the zero-deflection boundary condltlons, ' '

3. Because of the fact that the Lagranglan multiplier
method permits the effects of Iinfinite subsets of expansion
terms to enter into the solution, it 1s believed that s
particular stability determinant 4d2rived by the Lagranglan
multiplier method will, in general, yleld a closer upper
limit than that obtained from s determinant of equsl
order in the Rayleigh-Ritz method,

lLs Tt is expected that the method of Lagranglan
multlipliers may be useful in the analysis of..other sta-
bllity and vibration prohlems. In particulsr, the method
may be lmmedlately applied to the determination of
vibration frequencies of clamped plates, and to the
determination of bueckling stresses of clamped plates
under comuression in two directions.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautlcs
Langley Fleld, Va., May 3, 1946

o'
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APPENDIY
GITHRAT, PROOF OF THE METHOD OF LAGRAWGIAN YULIYIPLIERS e —

Iet 1t be required to minimize

f@q,xz,x5.. .x@ . (A1)

where the N x!'s are bound by the P independent
relationships (P < N)

P3(x1s %2, X3« « . xy) (I=1,2,3 .. .8 (a2)

It will be proved that the squations for determining
the minimizing vaelues of the x'!'s are:

5 5 5 :

LN e RS S R . (A3)

OXx OX g Oxy Boxy e
(K=1, 2, 3 . « « N)

$J<x1, Xp, X3 0w s XN) = 0 (equation (A2))
(7 =1, 2y, 3 o o o P)

The A's are Lagranglan multipliers; these (N + P)
equations determine N x's and P AMts,

If the.values of only (N = P) x's arc known,
the remaining P x's ars detsrmined from the P rela-
tionships (A2). For convenisnce, considser the last
P x's in equation (Al) to bs dependent upon the
first (N - P) x's. Then, for f +to bs a minimum i
its first partial derivatives with respect to the CT
independent xt!'s must vanlsh, or: :
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of of ox of OXy
. N-P+1 + N~-P+2 o0
OXM  OXyup+l OXy OXy-pt2 Oy
. o]
L2E 9N L, (M=1,2,3..% (N~ P)(Ah)
be GXM

But each of these equationa contains P quantities
that cannot be directly evaluated - the derivatives of
the dependent variables with respact to the independent
varlables, For each valus of N, these P derivatives
are determined by d&irffersntiating each of the P con-
straint relationships (42} with respect to xy. Thus,

é@J_F 0P be—P+1_+ 5?; i
0%y Oxy.py1 0%y -OFy.pp  OFy
3. Ox
J -
+ 4 4 g+ —— = (T =1,2, 3 4+ + & P) (A5)

Now, for each particular value of M, equation (al)
and the P equations (A5) make up a set of (P-+ 1)
linear hemogensous equations in the (P + 1) quantities 1,

ox 6]{ bx -
N-P+l, N-P+2, v s e ——E. Since these quantitiles

are surely not all zero, the determinant of—-their coef-
flcients must vanish, Hence, 1t is found that for ¢
to be a minimum it must necessarily be ftrue that:

L}
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of of

of

9%y OX; o

N=-P+1

201 00y

xN—P+2

bxN-P+1

LN-P+2

6@2

'.BCPP

Xy ps1  OXN-pi2

Oy OXj_psy O

EN-p+2

éxN

O@p

éxN

It will now be demonstrated that

tion equations will hold if equations (A3%) hold.

29

(46)

(M =1,2,3 . ;-.(N - P))

tnese necessary minimizg-

Inter-

changing the rows and columns of the determinant in
equation (A6) gives:

3 el 0%
dxy OXyy OXpy
d3F 3y 09,
OXy_py1 OXy_pr1 OXy.psl
dF 09, 00,
Oy ps2 OXy-pia OFy-pi2
or %% 2%
be be 6xN

=0 (A7)

(M=1,2,3...(N=P))
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The vanishing of this determlnant 1s, however, precisely
the condition of compatibility of the equations

_ \ |
é.f_ + ?\,16.21. + 7\.26.22. e a6 *+MN P _3?. )
6xM 5xM O xy 6xM
Of 0Q 0P, 0P,
+ +7S, + 4 4 s + 7\‘ = 0
S
O Xy_ps] )\jb XN-P+1 %IN-PH Oxy_pe1
o) o o)
of ., k%} Pl 4-k%’ 92 + . .-PXF__EE__==O > (48)
Oxy_pso TN pep TN pe2 A%y prp
oF ]2 bCPa O%
S T iEy RS Tt ey, T
N Oxy N o Oxy

when they are considered as linear homogeneous equations
in the gquantities 1, hl’ kz, « o e KP‘

Since a determinant (A7) exists for each value
of M u» to (N - P), =& set of equations (A8) exists
for each M. It is seen that in these sets only tlie
first equation varies, since only the first equation
depends upon M. Observation shows that—all the
( - P) determinants of eguation (A7) can be derived
from the set of N equations

d d Se
E Kl_El + ka_fg + . 4 et KP’”E = 0 ({equation (A3))
0 XK OXEK OXK dxy

(R=1, 2, 3 . « « N)

by successively wrlting the determinants of compatibility
of the last P equations with each of the first (N - P)
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equations in turn. It has thus been proven that if N
equations (A3) are true, the minimizing equation (46),
equivalent to equations (A7), must hold.

It is seen, however, that equations (A3) are
N equations in (¥ + P) unknowns consisting of
N x's and P A's, The remaining necessary P equa-
tions come from the origilnal equations of constraint (a2).
Hence, the simultasneous equations {(A2) and. (A3)

o o . .. 0 _
_6‘2' + )\'1_(.8]__' + )\'2—'?'2‘ + o 8 s * }\'P‘E—E =0 (equation (AB_))
(KR=1, 2, 3 . « « N)
¢J<xl, Xps Xz o o o XN) =0 (equation (A2))

(=1, 2, 3 « « « P)

are necessary equations for the minimizegtion of. L
f(xl, Koy X3 o o o XN), which was to be proved.
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Figure 1l,~ Four infinite strips of Fouriler coeff101ents
of expansion terms, -

\\\\fg\ 0 2 N 6 8 . . e

n
0 200 820 &0 8 | 280 —>
2 202 22 2 %62 82 —
L* foly 2 Wy %y Bg 20—
6 206 %26 86
8 208 228 8,8 -

ol

Flgure 2.~ Six inflnite strips of Fourier coefflcients
of expansion terms.
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